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Information systems analysis

1. Introduction

2. Petri nets and their applications (JM)

3. Performance evaluation of systems (JM) 

4. Temporal logic and its applications  (PG)



PROGRAMME CONTENT 

Form of classes - lecture Number of hours 

Lec 1 Introduction into modelling of  concurrent systems using Petri nets 1 

Lec 2 Behavioral properties of Petri nets: boundness, safety, reachability, 
liveness, reversibility, existence of home marking, persistency 

4 

Lec 3 Synchronization distance, bounded fairness relation   1  

Lec 4 Time Petri nets 1,5 

Lec 5 Coverability tree 1 

Lec 6 Matrices and net reductions in analysis of Petri nets properties 1,5 

Lec 7 Introduction into performance evaluation of  information systems 1 

Lec 8 Performance evaluation of sequential programs 1 

Lec 9 Performance evaluation using queueing  models 2 

Lec 10 Fundamental laws of operational analysis 4 

Lec 11 Stochastic and generalized stochastic Petri nets  2 

 



Lec 12 Logic LTL  2 

Lec 13 Logic CTL  1 

Lec 14 Model verification of system 1 

Lec 15  Model verification of system using UPPAL time state automata  2 

Lec 16 Model verification of system using NuSMV state automata 3 

Lec 17 Another kinds of temporal logics and temporal data bases 1 

Total hours30 



Evaluation (F – forming (during semester), P – 
concluding (at semester end)

Educational effect number Way of evaluating educational effect achievement

F11 PEK_W01 ÷ PEK_W02
PEK_U01 ÷ PEK_U02

Observation of: the preparation to the 
laboratory exercises, execution of the exercises, 
the results achieved, verbal responses.

F21 PEK_W03 ÷ PEK_W06
PEK_U03 ÷ PEK_U08

Observation of: the preparation to the 
laboratory exercises, execution of the exercises, 
the results achieved, verbal responses.

F31 PEK_W07 ÷ PEK_W9
PEK_U09 ÷ PEK_U11

Observation of: the preparation to the 
laboratory exercises, execution of the exercises, 
the results achieved, verbal responses.

F12   Exam
F22   Exam
F32   Exam
F1=F11  if  4,5⩽F11
F1=F12  if  3⩽F11<4,5  
F1=2      if  F11=2
F2=F21  if  4,5⩽F21
F2=F22  if   3⩽F21<4,5
F2=2      if  F21=2
F3=F31  if  4,5 F31⩽
F3=F32  if   3 F31<4,5⩽
F3=2      if  F31=2
P=F1/3+F2/3+F3/3   if  (3⩽F1 i 3⩽F2 i 3⩽F3),   otherwise   P=2



Information systems analysis
Literature for Petri nets and performance evaluation

• T. Murata, Petri nets: Properties, analysis and applications, 
Proceedings of the IEEE, 1989, Vol. 77, No. 4, 541-580.

• W. Reisig, Petri Nets – An Introduction, Springer, 1985.
• W. Reisig, Sieci Petriego, WNT, 1988.
• M. Szpyrka, Sieci Petriego w modelowaniu i analizie 

systemów współbieżnych, Inżynieria oprogramowania, WNT, 
2008.

• E. D. Lazowska, J. Zahorjan, G. S. Graham, K. C. Sevcik, 
Quantitative System Performance, Computer System Analysis 
Using Queueing Network Models, Prentice-Hall, Englewood 
Cliffs, 1984.

• T. Czachórski, Modele kolejkowe w ocenie efektywności sieci 
i systemów komputerowych, Wydawnictwo Pracowni 
Komputerowej Jacka Skalmierskiego, Gliwice, 1999.



Introduction
Life cycle phases of information systems where modelling and 
analysis are applied:

• Specification, 
• Design,
• Verification,
• Testing,
• Implementation,
• Performance evaluation and engineering
• Reliability analysis and engineering
• Safety analysis and engineering



Introduction

Information systems models can be divided into:

• Analytic,
• Simulation.

Information systems models can be divided into:
• Deterministic,
• Non-deterministic,
• Probabilistic.



Introduction
Expressive power, decision power of a modelling technique

Expressive power is characterized by:
Classes of systems that can be expressed by a particular modelling 

technique,
Properties of systems that can be described.

Decision power is characterized by:
Classes of systems that solutions can be found by modelling technique 

for,
Properties of systems that solutions can be found for.
(Computational complexity limitations)
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Concurrent systems modelling using Petri 
nets



Concurrent systems modelling using Petri nets

• Mutual exclusion of two cyclic sequential processes

Process activity stages:

CS – a critical section,

RP – remainder of the process,

P(s), V(s) – semaphore operations.

P(s)

 CS

V(s)

RP



Concurrent systems modelling using Petri nets
Mutual exclusion of two cyclic sequential processes

Process activity stages:

CS – a critical section,

RP – remainder of 

the process,

P(s), V(s) – semaphore 

operations.

     CRP – completion 

               of execution of CRP

A Petri net (safe and live) model of the cyclic sequential process 

RP

RP

P(s)

 CS

V(s)

  
CRP

P(s)

 CS

V(s)



Concurrent systems modelling using Petri nets

• Mutual exclusion of two cyclic sequential processes  (cont.)

Transitions fired : P(s), V(s), RP

RP

CRP

P(s)

 CS

V(s) 

RP

CRP

P(s)

 CS

V(s)

P(s)

RP

CRP

P(s)

 CS

V(s)

V(s)

CRP



Concurrent systems modelling using Petri nets

• Mutual exclusion of two cyclic sequential processes (cont.)

CS – the process is in 
critical section,

RP – the process is
in its remainder,

CRP – completion 
of the process 
remainder,

P(s), V(s) – semaphore
operations,

IR – critical resource is idle. Transitions with labels  P(s)  are enabled.

P(s) P(s)

V(s) V(s)

P1 P2

IRCS1 CS2

RP1 RP2

CRP1 CRP2

a)



Concurrent systems modelling using Petri nets

• Mutual exclusion of two cyclic sequential processes (cont.)

Transition  V(s)  of  the P1 process model is enabled
Petri net (safe and live) after firing of transition P(s) of P1

P(s) P(s)

V(s) V(s)

P1 P2

IRCS1 CS2

RP1 RP2

CRP1 CRP2

b)



Concurrent systems modelling using Petri nets

• Mutual exclusion of two cyclic sequential processes (cont.)

Transition  P(s)  of  the P2 process model is enabled
Petri net (safe and live) after firing of transition  V(s) of P1



Concurrent systems modelling using Petri nets

Mutual exclusion of two cyclic sequential processes (cont.)

Transitions  P(s)  of  both process models are enabled
Petri net (safe and live) after firing of transition  CRP1



Process 1 Process 2

R1 requested R2 requested

R2 requested R1 requested

R1, R2 released R1, R2 released

Deadlock example:

1. R1 allocated to Process 1

2. R2 allocated to Process 2

Deadlock



Process 1 Process 2

R1 requested R2 requested

R2 requested R1 requested

R1, R2 released R1, R2 released

R1 idle

R2 idle



Process 1 Process 2

R1 requested R2 requested

R2 requested R1 requested

R1, R2 released R1, R2 released

R1 idle

R2 idle



Process 1 Process 2

R1 requested R2 requested

R2 requested R1 requested

R1, R2 released R1, R2 released

R1 idle

R2 idle

Model of deadlock 



Concurrent systems modelling using Petri nets
Simple communication protocol

PM – production of a message,
CPM – completion of the

message production,
SM – sending the message,
WA – waiting on an acknowledgement,
TM – transmission of the message,
RM – receiving the message,
SA – sending the acknowledgement,
CM – consumption of the message,
MCC – the message consumption 

completion,
TA – transmission of the acknowledgement,
RA – receiving the acknowledgement.
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Properties of Petri nets
• Definition

A Petri net is a 6-tuple:

P – a set of places,

T – a set of transitions,

                                 – a set of arcs,

                         – an arc weight function,

                         – a place capacity function,

        – an initial marking function.
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Properties of Petri nets (Behavioural properties)

i.e., the place 
capacity 
function does 
not impose  
limitations on 
firing of 
transitions.
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Properties of Petri nets (Behavioural properties)

• A set of input (output) places of a transition         is
                                      (                              ).
• A set of input (output) transitions of a place         is
                                       (                             ).
Assumption:                       ;A transition t is enabled in marking M if
 

(each input place is marked with at least             tokens). 
• Firing of enabled transition t causes the following change 

of marking:
removes              tokens from each input place         ,
adds             tokens to each output place          .

}{ 0 )t,p(W|Ppt }{ 0 )p,t(W|Ppt
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Properties of Petri nets (Behavioural properties)

i.e., the place 
capacity 
function does 
not impose  
limitations on 
firing of 
transitions.
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Properties of Petri nets (Behavioural properties)

t3t1
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Properties of Petri nets (Behavioural properties)
Reachability graph

• 1011 – initial marking

 1011

 2001

 0021  0120

 1110

 2100

t1

t1

t1

t4

t4
t4

t3t2

t2

t1



Properties of Petri nets (Behavioural properties)
Reachability graph

•  



Properties of Petri nets (Behavioural properties)
•                    –  transition t has been fired in marking M, and marking M’ has 

been received  

• Definition
                     is a firing sequence for marking M, if  

• Notation:                   or  

• Definition
R(M) – a reachability set for marking M 
(set of all markings that are reachable from marking M)

where  T* – a set of finite words over an alphabet T with an empty word. 

n...
21

tttσ 

M'1nMnt
nM1-n

t
...

3
M

t

2
M1

t
MM       2

1

'MM  

'MtM 

'MM [

)}'MM*)(T(|'M{)M(R   



Properties of Petri nets (Behavioural properties)
• Firing sequences

• t1 t3 t2  is not any firing 
sequence

• Reachability set
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Properties of Petri nets (Behavioural properties)
• Definition

The Reachability problem
Input:   Petri net 
Output: 

• Theorem    (1981)   (Foundations of Petri net theory created by C. A. Petri in 1962.)
The Reachability problem for     is decidable. 
 Its computational complexity is exponential.

• Definition
The Submarking reachability problem 
Input:   Petri net                                         ,
Output:
where              is restriction of marking function M to set P’.  


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Properties of Petri nets (Behavioural properties)

• Submarking reachability

• Submarking

• is reachable.

• Submarking 

is not reachable.
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Properties of Petri nets (Behavioural properties)

• A Petri net                                       is bounded iff

• Is the following definition: 

equivalent to the above?

• A Petri net is k-bounded iff

• A Petri net is safe if it is 1-bounded.

• Practical aspect. Problem: Is Petri net safe? can be used in verification 
problem: Can buffer of capacity equal to 1 be overflowed?
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Properties of Petri nets (Behavioural properties)

• This net is:

bounded,

4-bounded,

2-bounded,

is not safe.
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 2001

 0021  0120

 1110

 2100
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t4

t4
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t3t2
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Properties of Petri nets (Behavioural properties)

• This Petri net is not bounded.

• Why? 

t1
t2

t3

t4



Properties of Petri nets (Behavioural properties)

• Definition

A transition t is live iff

where                   - transition t can be fired for marking M’.

• Definition

A Petri net is live if each of its transitions are live.

• Liveness means that there are no deadlocks in the net.

)t'M))(M(R'M))(M(RM( 
0

t'M



• Definition

A transition t is live iff 

where                   - transition t can be fired for marking M’.
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Properties of Petri nets (Behavioural properties)

• Is transition t3 
live?

• Are all 
transitions live?

• This Petri net is  
live.
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 2001

 0021  0120

 1110

 2100
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Properties of Petri nets (Behavioural properties)

Which transition is live?
The Petri net is not live

p3

t1

p1

t2

p5

t3

t4

p4

p2

t5

t6
p6

p7
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t1 t2
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Concurrent systems modelling using Petri nets

• Mutual exclusion of two cyclic sequential processes (cont.)

CS – the process is in 
critical section,

RP – the process is
in its remainder,

CRP – completion 
of the process 
remainder,

P(s), V(s) – semaphore
operations,

IR – critical resource is idle. Transitions with labels  P(s)  are enabled.

Is this Petri net live ?

P(s) P(s)

V(s) V(s)

P1 P2

IRCS1 CS2

RP1 RP2

CRP1 CRP2

a)



Properties of Petri nets (Behavioural properties)
• Definition

The Liveness problem
Input:   Petri net  N
Output:  

• Theorem   (1975)
The Liveness problem for  is equivalent to the reachability 
problem.

• Theorem    (1981)
The Reachability problem for     is decidable. 
 Its computational complexity is exponential.

 
• Conclusion

The Liveness problem for is decidable.

live?      Is   N
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Properties of Petri nets (Behavioural properties)

• Definition

A Petri net is reversible if

• Reversibility is a strong property. Hence, a weaker one has been introduced.

• Definition

Marking M’ is a so-called home marking if

)).M(RM))(M(RM( 
00

)).M(R'M))(M(RM( 
0



• Definition

Marking M’ is a so-called home marking if

)).M(R'M))(M(RM( 
0

 

     

    



Concurrent systems modelling using Petri nets

• Mutual exclusion of two cyclic sequential processes (cont.)

CS – the process is in 
critical section,

RP – the process is
in its remainder,

CRP – completion 
of the process 
remainder,

P(s), V(s) – semaphore
operations,

IR – critical resource is idle. Transitions with labels  P(s)  are enabled.

Is this Petri net reversible?

P(s) P(s)

V(s) V(s)

P1 P2

IRCS1 CS2

RP1 RP2

CRP1 CRP2

a)



Properties of Petri nets (Behavioural properties)
• Is this reachability 

graph of a reversible 

net? 

• Each reachable 
marking is 

the home one.
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 2001

 0021  0120

 1110

 2100
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t3t2

t2

t1



Properties of Petri nets (Behavioural properties)

• Is this reachability graph of 
a reversible net?

• There is no home marking.

0001010

1001000
t1 t2

0101000 0011000

t4

0000101

t5

1000100

t1

0100100

t3

t6

0010100

t2



Properties of Petri nets (Behavioural properties)

• Definition

A marking M is coverable if

• For Petri net without capacity function, if transition t can be 
fired in marking M, then t can be fired in M’.

))p('M)p(M)(Pp))(M(R'M( 
0



Properties of Petri nets (Behavioural properties)
• Which of these 

markings are 
coverable?

• 1101,
• 0110,
• 0022,
• 0011,
• 1001.
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Properties of Petri nets (Behavioural properties)

• Definition

A Petri net is persistent if

• For persistent Petri nets, once enabled transition can become 
disabled by its firing only.

).ttM)tMtM)((Tt,t))(M(RM(      212121
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Properties of Petri nets (Behavioural properties)

Condition (Premise) Conclusion Implication

true true true

false false true

false true true

true false false

ConclusionCondition



Properties of Petri nets (Behavioural properties)

Does marking 1001000 satisfy persistency requirement?
Do the other markings satisfy persistency requirement?

Is the Petri net persistent?

p3

t1

p1

t2

p5

t3

t4

p4

p2

t5

t6
p6

p7
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1001000
t1 t2
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Concurrent systems modelling using Petri nets

• Mutual exclusion of two cyclic sequential processes (cont.)

CS – the process is in 
critical section,

RP – the process is
in its remainder,

CRP – completion 
of the process 
remainder,

P(s), V(s) – semaphore
operations,

IR – critical resource is idle. Transitions with labels  P(s)  are enabled.

Is this Petri net persistent?

P(s) P(s)

V(s) V(s)

P1 P2

IRCS1 CS2

RP1 RP2

CRP1 CRP2

a)



Concurrent systems modelling using Petri nets
Simple communication protocol

PM – production of a message,
CPM – completion of the

message production,
SM – sending the message,
WA – waiting on an acknowledgement,
TM – transmission of the message,
RM – receiving the message,
SA – sending the acknowledgement,
CM – consumption of the message, Is this Petri net persistent?
CCM – the message consumption 

completion,
TA – transmission of the acknowledgement,
RA – receiving the acknowledgement.

SM

RA
PM CM

TM

TA

CPM CCM

RM

SA

WA



Properties of Petri nets (Behavioural properties)

• Definition

A synchronization distance between transitions t1, t2 of Petri net N is:

Σ(N) – a set of all firing sequences for all reachable markings,

 – a number of firings of transition t in firing sequence σ.

.

|)t()t(|
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maxd 21
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Properties of Petri nets (Behavioural properties)

• Examples of synchronization 
distances between transitions

t1
t2

t3

t4

1
12

d

1
34

d
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d



Properties of Petri nets (Behavioural properties)

• Is it true that ?

t1

t2 t3

t4

p1 p2

p3
p4

p5
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Properties of Petri nets (Behavioural properties)

• Is it true that ?

• Let us consider marking  10010. 

t1

t2 t3

t4

p1 p2

p3
p4

p5

))t()t()(tttt( 0
3

2
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Concurrent systems modelling using Petri nets
Simple communication protocol

PM – production of a message,
CPM – completion of the

message production,
SM – sending the message,
WA – waiting on an acknowledgement,
TM – transmission of the message,
RM – receiving the message,
SA – sending the acknowledgement,
CM – consumption of the message, What is synchronization 

distance
CCM – the message consumption between SM and CCM ?   1  or  

2?
completion,

TA – transmission of the acknowledgement,
RA – receiving the acknowledgement.

SM

RA
PM CM

TM

TA

CPM CCM

RM

SA

WA



Concurrent systems modelling using Petri nets

• Mutual exclusion of two cyclic sequential processes (cont.)

CS – the process is in 
critical section,

RP – the process is
in its remainder,

CRP – completion 
of the process 
remainder,

P(s), V(s) – semaphore
operations,

IR – critical resource is idle. Transitions with labels  P(s)  are enabled.

What is synchronization distance between CRP1 and CRP2 ?

P(s) P(s)

V(s) V(s)

P1 P2

IRCS1 CS2

RP1 RP2

CRP1 CRP2

a)



Properties of Petri nets (Behavioural properties)
• Definition

Transitions t1, t2 are in 
a bounded fairness relation if 
the maximal number of  times 
that either one can fire while 
the other is not firing is 
bounded.

• Petri net is a bounded fair net if 
every possible pair of 
transitions is in bounded 
fairness relation.

• Are the pairs of transitions:
t1, t2
t3,t4
in bounded fairness relation?

 1011

 2001

 0021  0120

 1110

 2100

t1

t1

t1

t4

t4
t4

t3t2
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t1



Properties of Petri nets (Behavioural properties)

• The pair t1, t2 is not in a bounded fairness relation (see   σ=(t1 t3 t1 t4)*  ).

• The pair t3,t4 is in a bounded fairness relation.


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Properties of Petri nets (Behavioural properties)

• Is it true that:

A pair of transitions t1, t2 is in a bounded fairness relation    iff      ?  

• Example  

because  of   σ=(t2 t2 t1)* .

t1, t2  are in a bounded fairness relation.
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Petri nets with time factor



Alternatives of introducing a time factor into Petri nets

Nature of time specification:

Deterministic,

Non-deterministic,

Probabilistic.

Petri net elements that the time factor is assigned to:

Place,

Transition,

Arc.



Models for applications 

Timed and time Petri nets for verification whether the functional 
requirements with quantitative time are satisfied by the design of 
the system.

Stochastic and generalized stochastic Petri nets for performance 
and reliability  evaluation and engineering of systems.



Time Petri nets with time interval assigned to 
transition

•  



Time Petri nets with time interval assigned 
to transition

 

 



Time Petri nets with time interval assigned 
to transition

•  



Time Petri nets with time interval assigned to 
transition

Mathematical tool:

System of linear inequalities with at most two variables per 
inequality.

Software tool:

TINA (Time Petri Net Analyzer)    LAAS CNRS



Time Petri nets with time interval assigned to arcs

•  



Time Petri nets with time interval assigned to arcs

 

 

 



Information Systems Analysis

Jan Magott

Behavioural properties of Petri nets 
(continued)



Properties of Petri nets
• Definition

A Petri net is a 6-tuple:

P – a set of places,

T – a set of transitions,

                                 – a set of arcs,

                         – an arc weight function,

 – an initial marking function.


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Properties of Petri nets (Behavioural properties)

• The reachability graph (b) for the net 
(a) is not finite.

• A problem is decidable if there is an 
algorithm with finite number of steps.

• Symbol  „ω” in coverability tree (c) 
represents the fact that an unbounded 
number of tokens can be contained  
in a place.

• In place p2 an infinite number of 
tokens might be contained. 

ω)nωωnωωN)(nn( 

t1

p1

p2

t1 t1

10 11 12 1k

t1

10 1ω
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b)
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Properties of Petri nets (Behavioural properties)
A coverability tree construction algorithm

1. Label the root of the tree as initial marking and symbol „new”.
2. Until there are „new” markings, execute:

2.1 Choose „new” marking M
2.2 If M is identical with a marking on the path from the root to the M,
      then label M  as „old”.
2.3 If there are no transitions that are enabled in marking M, 
      then label M  as „dead”.
2.4 Until there are enabled transitions in M, for each of them execute:

2.4.1 Compute marking M’ obtained after firing transition t 
2.4.2 If there is a marking M” on the path from the root to the M  that 

             , i.e., M” is covered by M’, 
          then for each p that          replace M’(p) by ω.
2.4.3 Add  M’ as  „new”, and draw the arc directed from vertex with M to    
  vertex M’, and label the arc as transition t.

Theorem 
Coverability tree is finite.

)())()()(( M'M"pM'pM"Pp 
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Properties of Petri nets (Behavioural properties)

A Petri net and its coverability tree
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Properties of Petri nets (Behavioural properties)

Properties that can be verified using a coverability tree

• A Petri net N is bounded (    is finite)   iff   there are no symbol ω in 
the tree.

• For a bounded Petri net, the reachability problem can be solved because 
each       occurs in the tree.

• If   then there exists a vertex with label  M’ in the tree 
that                .   

• A Petri net N is safe    iff    „0” and „1” only occur in rectangles of the tree.

• A transition t can never be fired   iff    t does not occur as label of arc in the 
tree.

)M(R
0

)M(RM
0


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0
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Properties of Petri nets (Behavioural properties)

Properties that cannot be verified using coverability tree

• If a Petri net is not bouded then coverability tree (with symbol 
„ω”) is sufficient to solve neither reachability nor liveness 
problem.



Properties of Petri nets (Behavioural properties)

A rechability graph with 6 vertices
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Properties of Petri nets 
(Behavioural properties)

A coverability tree

with 12 vertices

← Why this vertex 
is not the „old” 
one?
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Properties of Petri nets (Behavioural properties)

• A Petri net                                       is bounded if

• Is the following definition: 

equivalent to the above?

• A Petri net is k-bounded if

• A Petri net is safe if it is 1-bounded.

• Practical aspect. Problem: Is Petri net safe? can be used in verification 
problem: Can buffer of capacity equal to 1 be overflowed?

)k)p(M)(Pp))(M(RM,...})(,{k( 
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Properties of Petri nets (Behavioural properties)

• Definition

A transition t is live iff

where                   - transition t can be fired for marking M’.

• Definition

A Petri net is live if each of its transitions are live.

• Liveness means that there are no deadlocks in the net.

)t'M))(M(R'M))(M(RM( 
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Properties of Petri nets (Behavioural properties)

i.e., the place 
capacity 
function does 
not impose  
limitations on 
firing of 
transitions.
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Properties of Petri nets (Behavioural properties)
Reachability graph

• 1011 – initial marking
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Properties of Petri nets (Behavioural properties)

Decision power of reachability graph when liveness problem has 
to be solved

• If for every vertex  of the finite reachability graph there exists a 
path directed from this vertex which contains arc labelled as t, 
then transition t is live.

• If finite reachability graphs are strongly connected then 

transition t is live iff there exists an arc labelled as this transition.



Properties of Petri nets (Behavioural properties)
• Definition

The Reachability problem
Input:   Petri net 
Output: 

• Theorem    (1981)
The Reachability problem is decidable. 
 Computational complexity of an algorithm is exponential.
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Properties of Petri nets (Behavioural properties)

• Definition
The Liveness problem
Input:   Petri net  N
Output:  

• Theorem   (1975)
The Liveness problem is equivalent to the reachability problem. 

• Conclusion
Computational complexity of Liveness problem is exponential.

live?      Is   N
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The matrix equation method



• Definition

A Petri net is pure if 

• A graph of a pure Petri net does not contain loops.

Properties of Petri nets (Behavioural properties)
The matrix equation method
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Properties of Petri nets (Behavioural properties)
The matrix equation method

• For a pure Petri net with |P|=n and |T|=m, incidence matrix C is defined as 
follows:
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Properties of Petri nets (Behavioural properties)
The matrix equation method

• Why a pure Petri net cannot be represented by any incidence matrix?

This is a contradiction.
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Properties of Petri nets (Behavioural properties)
The matrix equation method

• Example
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Properties of Petri nets (Behavioural properties)
The matrix equation method

• j-th column of matrix C expresses influence of transition       firing 

   Firing of the transition decreases 
       the number of tokens in the place by

   Firing of the transition increases 
       the number of tokens in the place by  njc

ijc

j
c


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pi W(pi,tj)

W(t j,pi)
pi

tj
W(pi,tj)

   W(tj,pi)



Properties of Petri nets (Behavioural properties)
The matrix equation method

• Let

       - an initial marking

      - a firing sequence that starts in marking

      - a firing vector of a sequence       which contains m=|T| entries and i-th entry

is equal the occurrence number of the transition       in the sequence
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Properties of Petri nets (Behavioural properties)
The matrix equation method

• A token number change in place  pi  as a result of             firings of transition   tj 

• A token number change in place  pi  as a result of firing sequence

        -   i-th row of matrix C
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Properties of Petri nets (Behavioural properties)
The matrix equation method

• A matrix representation of marking  M

• If                          then

• Hence,

or

1| |P
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Properties of Petri nets (Behavioural properties)
The matrix equation method

• Linear algebra methods are more efficient computationally than 
combinatorial enumeration of reachability graphs.

• Computational complexity of an algorithm solving linear equations
    is         .         

• Computational complexity of an algorithm solving linear equations
    with integer entries is    ???
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Properties of Petri nets (Behavioural properties)
The matrix equation method

A number of reachable markings

Conclusion
The number of reachable markings  

can be an exponential function 
of a Petri net size.
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Properties of Petri nets (Behavioural properties)
The matrix equation method

• Problem

Does the condition 

is necessary and sufficient condition that ?

It is the necessary condition indeed because

However, it is not the sufficient condition.
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Properties of Petri nets (Behavioural properties)
The matrix equation method

• Example (that it is not the sufficient condition)
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Properties of Petri nets (Behavioural properties)
The matrix equation method

• Example (that it is not sufficient condition)

• However, there is no sequence      that
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Properties of Petri nets (Behavioural properties)
The net reduction method

• In order to reduce computational complexity of algorithms for Petri net 
analysis problems, reductions are used.

• Reductions that preserve liveness, boundness, and safety of Petri nets are 
such that:

Let N and N’, respectively, be nets before and after reduction. 

Net N’ is live, bounded, and safe  iff   net N is live, bounded, and safe. 



Properties of Petri nets (Behavioural properties)
The net reduction method

• Assumption:    M(p)=M(p1)+M(p2)

A sequential connection of places

p1

p2

p



Properties of Petri nets (Behavioural properties)
The net reduction method

A sequential connection of transitions





Properties of Petri nets (Behavioural properties)
The net reduction method

• Assumption:   M(p1)=M(p2)=M(p)

A parallel connection of places


 p1  p2 p



Properties of Petri nets (Behavioural properties)
The net reduction method

• Assumption:  M(p1)=M(p3), M(p2)=M(p4)

A reduction of parallel transitons

p1

p2

p3

p4
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Properties of Petri nets (Behavioural properties)
The net reduction method

A loop-place elimination





Properties of Petri nets (Behavioural properties)
The net reduction method

A loop-transition elimination
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Performance evaluation of systems

• Performance evaluation can be done at the following abstraction levels:

  hardware configuration,

  program,

  computer system.

• Performance measures for hardware configuration level:

  memory cycle time,

  disc access time,

  instruction type execution time,

  chanel transmission throughput.



Performance evaluation of systems

• Performance measures for program level: 
  program mean execution time,
  mean transition time between two selected points of program,
  maximal number of executions of a loop in real time system program.

• Performance measures for computer system level: 
  mean response time for system with terminals,
  mean access time to data in data base,
  mean packet transmission time between pair of selected network nodes.



Performance evaluation of systems

• Approaches in computer systems performance evaluation:

intuition and trends extrapolation,

experimental evaluation of alternative solutions,

modelling.

In experimental evaluation, measurements are executed using hardware 

and software monitors. 

Model based estimations can be obtained using simulation or analysis.



Performance evaluation of systems

• Measurements of …  provided …:

Real system in real workload,

Real system in artificial workload,

Prototype system in real workload,

Prototype system in artificial workload.

• Modelling using:

Simulation models,

Analytic models.



Performance evaluation of systems
• Modelling

Aspects that are important from modelling goal should be expressed.

Abstraction level (How many details are represented?)

Simulation models are usually more detailed and more adequate than analytic ones.

Simulation models are usually solved in a simpler way.

Computation time of analytic models is usually shorter than of simulation models.
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Performance evaluation of systems
Programs with sequential control structures

• Assumption 
Execution times of operations, actions or statements are given by a real 
number.

Linear program Pr where A, B, C, D are operations, actions or statements

- execution time of A

• Execution time of the program  Pr

Start EndA B C D

 R)A(

    (Pr) ( ) ( ) ( ) ( )   A B C D

    (Pr) ( ) ( ) ( ) ( )   A B C D



Performance evaluation of systems
Programs with sequential control structures

A program with decision

 –  execution time of decision  D

P – probability of an event that after the decision D, the B action is executed 

If     then execution time of the program depends on the 
decision.

Start EndA

B

C

D

P

1-P

( )D
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Performance evaluation of systems
Programs with sequential control structures

• Execution time estimation methods

1. The worst case method

       - execution time estimation of the worst case

Application: real-time systems.

    w A D B C(Pr) ( ) ( ) max{ ( ), ( )}  
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Performance evaluation of systems
Programs with sequential control structures

2. The most probable path method

If    P>1-P   then 

If    P<1-P   then 

Start EndA

B
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D
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   g A D B(Pr) ( ) ( ) ( )  
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Performance evaluation of systems
Programs with sequential control structures

3. The arithmetic mean method

4. The random variable mean method

Application: general purpose systems.
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Performance evaluation of systems
Programs with sequential control structures

• Execution time estimation for program control structures

• Notation:
B – a Boolean expression,
S, Si – operations, actions, statements,
Ci – value of the same type as expression E.

• Assumptions
Random variables of execution times of control structures components are 
independent.
Execution times of decisions are equal to zero.



Performance evaluation of systems
Programs with sequential control structures

• Sequential composition {S1;S2}

- mean value of random variables of exection times of S1, S2

Result of sequential composition of S1 and S2

S1 S2

 S S1 2,

S

  S S S 1 2 2
2

1
22
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Performance evaluation of systems
Programs with sequential control structures

• Alternative     if  (B)  S1 else S2

          - mean value, variance of execution time of the 
alternative
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Performance evaluation of systems
Programs with sequential control structures

• Iteration    for  (i=0; i<n; i=i+1)  S1

 S Sn  1

 S Sn2
1
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Performance evaluation of systems
Programs with sequential control structures

• Iteration       while   (B)   S1
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Performance evaluation of systems
Programs with sequential control structures

Iteration      do  S1 while (B) 

P
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Performance evaluation of systems
Programs with sequential control structures

Choice    switch (E) { case C1:S1; case C2:S2;  ... ,  case Cn:Sn; }
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B
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Performance evaluation of systems
Programs with sequential control structures

• Non-structural program without loops  

Example

Start λ1

p1

p2

λ3

p3

p4

λ2

λ4 End



Performance evaluation of systems
Programs with sequential control structures

Non-structural program without loops  (cont.)

• Assumptions:

1. Decision execution time is equal to zero.

2. Random variables of operation executions times are independent.

3. Operation execution time of i-th operation is expressed by an exponential 
random variable with parameter 

i



Performance evaluation of systems
 Markov chains with continuous time

•  
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Performance evaluation of systems
Programs with sequential control structures

Non-structural program without loops  (cont.)

A Markov chain transition diagram

for the program

s1

s2

s3

s5s4

λ1p1

λ1p2

λ2

λ3p3

λ3p4

λ4

Start λ1

p1

p2

λ3

p3

p4

λ2

λ4 End



Performance evaluation of systems
Programs with sequential control structures

Non-structural program without loops  (cont.)

s1, s2, s3, s4  -  transient states,

s5 – the absorbing state (final state).

s1

s2

s3

s5s4

λ1p1

λ1p2

λ2

λ3p3

λ3p4

λ4



Performance evaluation of systems
Programs with sequential control structures

Non-structural program without loops  (cont.)

Mean sojourn time in a transient state         of Markov chain:

- a set of states that transitions from state    are directed to,

- transition intensity from state  to state        .  
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Performance evaluation of systems
Programs with sequential control structures

Non-structural program without loops  (cont.)
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Performance evaluation of systems
Programs with sequential control structures

Non-structural program without loops  (cont.)

s1

s2

s3

s5s4

λ1p1

λ1p2

λ2

λ3p3

λ3p4

λ4
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Performance evaluation of systems
Programs with sequential control structures

Non-structural program without loops  (cont.)

Mean number of transitions  E(ti )  through state    of the Markov chain is:

- a set of states that transitions to state          are directed from,

- a probability that the Markov chain from state       transits to state  
      .  
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Performance evaluation of systems
Programs with sequential control structures

Non-structural program without loops  (cont.)
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Performance evaluation of systems
Programs with sequential control structures

Non-structural program without loops  (cont.)

Mean number of transitions  E(ti )  through state of the Markov chain is:

Hence

ki
)s(Ik
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Performance evaluation of systems
Programs with sequential control structures

Non-structural program without loops  (cont.)

Mean execution time of the program:

E(ti )  -   mean number of transitions through state   of the Markov chain,
E(si )  -  mean sojourn time in transient state      of the Markov chain.

is
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Performance evaluation of systems
Markov chains with continuous time



•  



Performance evaluation of systems
 Markov chains with continuous time

•  
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Performance evaluation of systems
 Markov chains with continuous time

                   - intensity of transition from state i into state j

- probability that in time instant t the process is in state i

- probability that the process will transit from state i into 
state j in time interval of length h provided

o(h)  is such that 
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Performance evaluation of systems
 Markov chains with continuous time

• In a stationary state:
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Performance evaluation of systems
 Markov chains  with continuous time

• What is the relation between coefficients of obtained equation:

and the transition intensities matrix:

?

Recommendation: Read about Chapman-Kolmogorov equations, 
please.
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Performance evaluation of systems
 Markov chains with continuous time

The above equations are dependent.

Hence, an additional equation is required.

Solution:
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Performance evaluation of systems
 Markov chains with continuous time

• The ergodic (stationary) solution is obtained by solving the following linear 
equation system

 
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Performance evaluation of systems
 Markov chains with continuous time

The equations obtained :

can be transformed into the following equation system:

Let us analyse the first equation:

0λμ0

00)μα(

0λα

321

321

321






πππ

ππβπ

ππβπ

μλ

)μα(

λα

23

12

321






ππ

βππ

ππβπ

λα 321  ππβπ



Performance evaluation of systems
 Markov chains processes with continuous time

Let us analyse the first equation:

Flow from the state 1 is:

Flow to the state 1 is:

In a stationary state, both flows are equal.
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Performance evaluation of systems
 Markov chains processes with continuous time

M/M/1   queue

M (before „/”) – a client arrival process is Poisson process with parameter λ.

Time between arrivals of i-th client and (i+1)-th client is expressed by an 
exponential distribution with parameter λ.

M (between „/” and „/”) – service time is described by an exponential distribution 
with parameter μ.

1 – one service element at the service station.

Service station

Client
departure

Client
arrival

λ

μ

Queue



Performance evaluation of systems
 Markov chains with continuous time

i  –  state that represents number of clients in the system (number of clients 
in the queue and client in the service station)

A transition intensities diagram of an M/M/1 queue 

 0 1  2 i-1 i i+1

λ λ λ λ λ λ λ

μ μ μ μ μ μ μ

. . .



Performance evaluation of systems
 Markov chains with continuous time

A transition intensities matrix of an M/M/1 queue
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Performance evaluation of systems
 Markov chains with continuous time

• A stationary state condition:

λ<μ

Otherwise length of the queue can be infinite.

Stationary state solution:
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Performance evaluation of systems
 Markov chains with continuous time

p3o   -  a probability that a client leaves the system after service at station 3

A queueing network model

λ

input

output

p23=1

p3o

p31

p12+ p13=1

p31+ p3o=1

μ1

μ2

μ3

p12

p13



Performance evaluation of systems
 Markov chains with continuous time

• Weeknesses of queueing network models:

Many synchronisation modes cannot be represented, e.g. handshaking.

Impasses cannot be expressed.

• Petri nets can express the above aspects.

Incorporating a time factor into Petri nets enables performance evaluation.
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networks



Performance evaluation using queuing networks

A service centre with a queue and its compact representation

Service centre

Client
departure

Client
arrival

Queue



Performance evaluation using queuing networks

A queuing network model of a computer system

Discs

D1

D2

D3

Client
arrivals

Client
departures

CPU



Performance evaluation using queuing networks

A queuing network model of a computer system  (cont.)

• Parameters 

Workload – a client arrival intensity (e.g. 2 clients/sec,
A Poisson process with parameter λ= 2 clients/sec)

Service requirements – service time per one visit at service centre
(e.g. 3 sec at CPU, 1 sec at D1, 3 sec at D2,
expressed by a random variable),

a number of visits at service centre
(e.g. 3 at CPU,
expressed by a random variable with natural values).



Performance evaluation using queuing networks

A queuing network model of the computer system with terminals

Discs

D1

D2

D3

CPU

Terminals



Performance evaluation using queuing networks

A queuing network model of the computer system with terminals (cont.)

• Parameters 

Workload:
1. a number of clients (active terminals),
2. mean time of work on terminal (time between client departure from the system and 

client arrival to the system). 

Service requirements:
3. service time per one visit at service centre,
4. a number of visits at service centre.



Performance evaluation using queuing networks
• Queuing networks features:

The request (client) is moving through service centres,
The following service centres are modelled:
– service centres with FIFO queue (express CPU with FIFO scheduling 

discipline),
– service centres with the Round-Robin service discipline,
– delay dervice centres (represent transmission medium),
When a service of a request at a service centre has been completed, then 

the request can move to the other service centre,
A next service centre can be selected according to a discrete probability 

distribution.



Performance evaluation using queuing networks

• Elementary queuing networks features:

Requests compete for resources, but they do not cooperate,

The requests are atomic in the sense that they are not combined from the smaller 
parts,

Neither synchronization nor communication between requests can be described,

If a service at a given centre has been completed then the centre is no longer allocated 
to the request, so deadlocks cannot be modelled.

• Expressive power of the elementary queueing networks is smaller than expressive 
power of Petri nets with the time factor.

• The main advantage of elementary queueing networks is their relatively small 
computational complexity, when comparing with Petri nets with the time factor.



Performance evaluation using queuing networks

• System characteristics:

Utilization (the part of the time the service centre, e.g. CPU is busy),

Mean residence time (the mean time from client arrival instant till client 
departure instant),

Mean number of clients in the system (a mean number of clients at all 
service centres, eg. CPU, discs, and in all queues),

System throughput (a mean number of clients that leave the system, i.e. their 
requests become completed, per one time unit).



Performance evaluation using queuing networks

• Continuous time Markov chains approach (features):
– Chapman-Kolmogorov equations,
– Linear equality system with a number of equalities equal to the number 

of system states,
– Non-intuitive,
– Complex analytical solutions.

• Operational analysis approach (features):
– Analysis in terms of mean values,
– More intuitive approach than the Markov chains approach.



Information Systems Analysis
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Performance evaluation using queuing networks
Fundamental laws of operational analysis



Performance evaluation using queuing networks
 Fundamental laws of operational analysis

T – length of an observation time interval,

A – a number of client (requests) arrivals in the time interval,

C – a number of clients whose service has been completed in the time interval 
(number of client departures in the time interval).

Client

arrivals

Client 
departures

System of 

service centres



Performance evaluation using queuing networks
 Fundamental laws of operational analysis

T – a system observation time interval length,

A – a number of client arrivals in the time interval,

C – a number of clients whose service has been completed in the time interval 
(number of client departures in the time interval).

λ – an arrival rate

X – throughput 

T

A


T

C
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Performance evaluation using queuing networks
 Fundamental laws of operational analysis

• Assumption

The system contains one service station only.

B – busy time (lenght of time interval when the system is busy),

U – utilization,

S – mean service time

Utilization law

T

B
U 
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B
S 

SXUSX
C
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B
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Performance evaluation using queuing networks
 Fundamental laws of operational analysis

• Little’s law

N – a mean number of clients in system,
k – a number of intervals when number of clients in the system is constant,

- a length of i-th time interval,
- a number of clients in i-th time interval,

- total residence (in queues and at servive stations) 
time of all clients in a time interval length T,
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Performance evaluation using queuing networks
 Fundamental laws of operational analysis

• Little’s law  (cont.)

 - throughput

 - mean residence time of clients that have been serviced

• Finally
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Performance evaluation using queuing networks
 Fundamental laws of operational analysis

• Little’s law  (cont.)

Informal explanation

During the residence time, a request is moving from the end of the queue 
to the output of the service centre. The mean number of clients N in the 
system is equal to the mean number of requests that enter the service 
centre during the mean residence time R. If the service centre is in a 
stationary state, then the mean number of requests coming to the centre 
per one time unit is equal to the throughput X. Therefore, the mean 
number of requests that enter the centre during the mean residence time 
R is equal to X∙R.

RXN 



Performance evaluation using queuing networks
 Fundamental laws of operational analysis

• Little’s law  (cont.)

Importance

If two from the three values: N, X, R are known from measurements of a service 
centre, then the third one can be calculated.

Little’s law is widely used in queueing model analysis. Assumptions to apply the 
law are rather weak. In queueing network analysis, memoryless property (Markov 
property) of a stochastic process is often required. Such assumption is not 
required for Little’s law. The law can be applied even for systems with so strongly 
past dependent behaviour as systems with deterministic models of input stream 
and service.

The law can be applied at different levels of system organization.

RXN 



Performance evaluation using queuing networks
 Fundamental laws of operational analysis

• Little’s law  (cont.)

• Levels 

L1, L2, L3, L4

of system analysis

Discs

D1

D2

D3

CPU

Terminals

L1L2L3
L4



Performance evaluation using queuing networks
 Fundamental laws of operational analysis

• L1  -   disc D3 without its queue

N – a mean number of clients at D3 without its queue,

X – throughput of D3,

R – mean residence time at D3, i.e., mean service time S at D3.

There can be 0 or 1 client at D3.

  - total length of intervals when there is 0 (1) clients (client) at D3

Hence,

Conclusion: Utilization law is a particular case of Little’s law.
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Performance evaluation using queuing networks
 Fundamental laws of operational analysis

• L2  -   disc D3 with its queue
N – a mean number of clients at D3 and in its queue,
X – throughput of D3,
R – mean residence time at D3 and in its queue,
S – mean service time at D3.

Assumption:  N, X, and S are given. Hence,

Q – mean time in the queue Q=R – S
Therefore, XQ=XR –XS
XQ=NQ  –  a mean number of clients in the queue,
XR=N 
 XS=U  –  utilization.
Finally: NQ = N – U

RXN 

X

N
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Performance evaluation using queuing networks
 Fundamental laws of operational analysis

• L4 – a service centre with terminals as the interactive system that Little’s law is 
applied to Terminals

Service centre

L4



Performance evaluation using queuing networks
 Fundamental laws of operational analysis

N – a number of requests (clients) in the interactive system,

X – throughput, i.e., the rate of interaction flow between terminals 

and service centre,

R – the mean residence time in the service center, i.e., the response time,

Z – the mean thinking time,

R’ – the mean residence time in the interactive system: 

R’=R+Z

According to Little’s law:

N=XR’=X(R+Z)

Response time law:

Z
X

N
R 



Performance evaluation using queuing networks
 Fundamental laws of operational analysis

• Forced flow law

Discs
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Performance evaluation using queuing networks
 Fundamental laws of operational analysis

C – a number of requests completed by the system during observation time,
     – a number of requests completed at the i-th service centre during the 
observation time,
     – mean number of visits of a request at the i-th service centre

Hence,

Forced flow law:

           
       – throughput of the i-th service centre 
  X  – throughput of the system
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Performance evaluation using queuing networks
 Fundamental laws of operational analysis

- the mean service time for one visit of a request at the i-th service centre,

- the mean total service time of the request at the i-th service centre,

Utilization of the i-th service centre:

kS

kD

kkkkkk DXSVXSXU 



„Bottleneck” of queuing network

•  



Open system ( transactional)
•  



Open system ( transactional)

•  
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Stochastic Petri nets

• Alternatives of introducing a time factor into Petri nets

Nature of time specification:
Deterministic,

Non-deterministic,

Probabilistic.

Petri net elements that the time factor is assigned to:
Place,

Transition,

Arc.



Stochastic Petri nets 
• Transition firing semantics

With regard to a transition firing rule:
Atomic firing (tokens are removed from input places of transition and 

added to output places in a single indivisible operation)
Firing in three phases:

firing initialization (tokens are removed from input places),
time passing (elapsing),
firing completion (tokens are added to output places ).

With regard to transition firing multiplicity:
single server semantics (at each time instant transition can be fired at 
most once),
multiple server semantics (at each time instant transition can be fired 
more than once).



Stochastic Petri nets

• Definition

A stochastic Petri net (basic model) is a 5-tuple:

P – a set of places,

T – a set of transitions,

          – a set of arcs,

          – an initial marking function,

– a transition firing intensity vector, 
firing intensity is the parameter of exponential random variable of 
firing time.

The arc weight function is omitted because .

The place capacity function is omitted because     .

)PT()TP(F 

 Λ,MF,T,P,SPN 0

{1}F:W

 |T|i λ,...,λ,...,λΛ 1

}{P:C

}{0,1,2,...: PM
0
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Stochastic Petri nets

• Entries of the transition firing intensity vector 

can be constants or functions.

Entry of the transition firing intensity vector as a function of marking:

    is the reachability set for the initial marking . 

Firing is atomic (tokens are removed from input places of transition and 
added to output places in a single indivisible operation).

 |T|i λ,...,λ,...,λΛ 1

 RMR:λi )( 0

)( 0MR 0M



Stochastic Petri nets
• Firing is atomic (tokens are removed from input places of transition and 

added to output places in one indivisible operation).

• In given time instant, at most one transition can be fired. It is the consequence 
of the fact that transition firings process is Markov process.

• Firing time of a transition is the lentgh of time interval from instant when the 
transition became enabled till instant when the transition is fired. 

• Firing time of transition     is expressed by exponential random variable with 
constant or functional, respectively, parameter

• For functional parameter, mean firing time of transition      in marking        :

)(Mλλ jii or     
it

it jM

)(Mλ ji

1



Stochastic Petri nets

Markov process with continuous time and with „1” as its initial state

represented by a stochastic Petri net 

1

2

3
α

β

λ

μ

λ

α

β

μ



Stochastic Petri nets
• An example of a computer system which will be modelled by a stochastic Petri net

Features:

– System is combined from three computers.

– For each computer, its time to failure is described by an exponential random 
variable with parameter λ.

– Repair time of any computer is expressed by an exponential random variable 
with parameter μ. One computer only can be repaired at any given time instant.



Stochastic Petri nets

• Transition firing intensities
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Stochastic Petri nets

A stochastic Petri net and its reachability graph
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Stochastic Petri nets

A stochastic Petri net and its transition intensities diagram
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Stochastic Petri nets

States of the Markov chain are markings of the stochastic Petri net 
reachability graph
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Stochastic Petri nets
Mean firing time of transition      in marking         isit
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Stochastic Petri nets

• Mean sojourn time in marking

  

- a set of transitions that are enabled in marking
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Stochastic Petri nets
Mean sojourn time in marking  M=[21] 
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Stochastic Petri nets

• A firing probability of transition        in marking

  

- a set of transitions that are enabled in marking
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Stochastic Petri nets
 Firing probability of transitions               in marking  M=[21] 
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Stochastic Petri nets

A stochastic Petri net that represents the M/M/1 queue.
Transitions with single server semantics (at each time instant, firing time  

can elapse for at most one firing). 

Service station

Client
departure

Client
arrival

λ
μ

Queue

M/M/1 queue

λ μ



Stochastic Petri nets

A stochastic Petri net which expresses M/M/1 queue and its transition intensities diagram

λ μp

 0 1  2 i-1 i i+1

λ λ λ λ λ λ λ

μ μ μ μ μ μ μ

. . .



Stochastic Petri nets
• Comparison of reachability set of stochastic Petri net

and reachability set of Petri net

Let          and           be reachability sets of SPN and N  
respectively.

Let       and      be sets of transitions that are enabled in 
marking    of  SPN  and  N  respectively.

Hence, = 

 Λ,MF,T,P,SPN 0

 0MF,T,P,N

SPN)M(R 0 N)M(R 0

SPNj )M(E Nj )M(E
jM

)}M|t{P)()M(Et)()M(RM( SPNjkNjkNj 00 

SPN)M(R 0 N)M(R 0



Stochastic Petri nets
• Disadvantages of stochastic Petri nets:

• In oder to find a stationary state solution, a linear  equation system that 
contains n linear equations, where n is the number of states of Markov 
process (number of markings reachable from initial marking), has to be 
solved.

• Often in real life systems there are two time scales. The first one is 
associated with long activities, e.g. transmission of messages, service 
preparing, data base transactions. The second one is connected with short 
activities, e.g. operating system decisions. In a stochastic Petri net, 
execution time of both is expressed by exponential random variables. 
Hence, short and long activities have similar influence on a size of the state 
space.  
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Generalized stochastic Petri nets
• In generalized stochastic Petri nets, there are two types of transitions:

• 1. Timed transitions  -  their firing time is expressed by exponential random 
variables,

• 2. Immediate transitions – their firing time is equal zero. 

μ



Generalized stochastic Petri nets
• Expressive power of Petri net is smaller than expressive power of Turing 

machines. In order to increase expressive power of Petri nets, inhibitor arcs 
have been introduced.

• The transition t can be fired provided there is no token in place . 
The arc < , t >  is called an inhibitor arc.
„Testing for zero” is expressed this way.
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Generalized stochastic Petri nets

• Definition

A generalized stochastic Petri net is an 8-tuple:

have similar meaning as in definition of stochastic Petri net, 
 –  a set of inhibitor arcs,
       –  a priority function:
–  for timed transitions      (lowest priority),
–  for immediate transitions ,

–  a timed transition firing intensity vector,
–  an immediate transition weight vector.

0Pr(t)

0MF,,T,P
TPH 

}210{ ,...,,T:Pr 
0)tPr(

 WΛ,,M,PrH,F,,T,PGSPN 0

 |T|i t
λ,...,λ,...,λΛ 1

tTt 
iTt 

 |T|i i
w,...,w,...,wW 1



Generalized stochastic Petri nets

• Priorities of immediate transitions are higher than priorities of timed 
transitions. Hence, immediate transitions are fired first. If there are no 
enabled immediate transition then enabled timed transition can be fired. 
Immediate transitions are fired according to their priorities.

• Timed transitions are fired in the similar way transitions of stochastic Petri 
nets are fired.

• Weights are used in calculations of immediate transitions firing 
probabilities for transtions with the same priority.



Generalized stochastic Petri nets

• A firing probability of immediate transition        in marking

  

- a set of immediate transitions with the highest priority from 
the transitions enabled in marking
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Generalized stochastic Petri nets
• A firing probability of immediate transition                 in marking  [11]

provided the transitions have equal priorities
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Generalized stochastic Petri nets

The place contains: a client who is being serviced and clients in the queue 

A stochastic Petri net model of queue  M/M/1

Service station

Client
departure

Client
arrival

λ
μ

Queue

M/M/1 queue

λ μ



Generalized stochastic Petri nets

p1 –  a queue; a token in this place is a client who is waiting on service
p2 –  a service; a token in this place is a client who is being serviced
p3 –  an idle station; a token in this place denotes that the station is idle
λ –  a parameter of arrival Poisson process
μ –  a parameter of service process

A generalized stochastic Petri net model of  M/M/1 queue

p1

p3

p2λ μ



Generalized stochastic Petri nets
• Queue  M/M/k/m/n

n  –  a number of clients (size of the source of clients), 

First M  –  the client whose service has been completed is ready to arrive again to 
the queue after time described by an exponential random variable,
this time can represent a client’s activity which does not require the station,

k  –  a station with k servers,

Second M  –  a service process at the server lasts time expressed by an exponential 
random variable,

m  –  a number of positions in the queue,



Generalized stochastic Petri nets
• Queue  M/M/2/5/10

• p1 – a queue,
• p2 – a station,
• p3 – idle servers,
• p4 – a client activity,
• p5 – free places in the queue,
• p6 – the client after its activity and before arriving into the queue.
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Generalized stochastic Petri nets
• Queue  M/M/2/5/10

M(p2)∙μ – a transition firing intensity of transition t4, where M(p2) 
is the number of servers of the service station that are busy,

M(p4)∙λ – a transition firing intensity of transition t1, where M(p4) 
is the number of clients executing their activity.
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M(p2).μ
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Generalized stochastic Petri nets

• A reachability set of generalized stochastic Petri net (GSPN) is divided into 
two classes:

• Tangible markings (only timed transitions can be enabled),

• Vanishing markings (at least one immediate transition is enabled).

Sojourn time in a vanishing marking is equal to zero because immediate 
transitions are fired before timed ones, and firing time of immediate 
transitions is equal to zero.



Generalized stochastic Petri nets
Transition firing

• In vanishing markings (at least one immediate transition is enabled).

1. Enabled transitions with highest priority are selected,

2. Transitions from  - a set of immediate transitions with the 
highest priority from transitions enabled in marking      are fired

• In tangible markings (only timed transitions can be enabled).

Enabled timed transitions are fired as for stochastic Petri nets.

Transitions are not fired simultaneously.
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Generalized stochastic Petri nets
• A transition probability matrix  A  of GSPN with finite reachability set

Kv – a number of vanishing markings 

Kt – a number of tangible markings

- a transition probability from the i-th vanishing marking to the j-th 
vanishing marking

- a transition probability from the i-th vanishing marking to the j-th 
tangible marking
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Generalized stochastic Petri nets
• A transition probability matrix  A  of GSPN with finite reachability set

Kv – a number of vanishing markings 
Kt – a number of tangible markings
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Generalized stochastic Petri nets
•  

   

 

 

   



Generalized stochastic Petri nets
• In order to reduce computational complexity, we want to find the transition 

probability matrix between tangible markings only, however, taking into account 
transitions through vanishing markings.

- a transition probability from the i-th tangible state to the j-th tangible state 
provided transitions through vanishing markings are taken into account.

V  – a set of vanishing markings,
 –  a transition probability from the i-th tangible marking to the j-th tangible one,

 –  a transition probability from the i-th tangible marking to v-th vanishing one,
 –  a transition probability from the v-th vanishing marking to the j-th tangible 
one, in any number of transitions through vanishing markings only.
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Generalized stochastic Petri nets

- a transition probability from the i-th vanishing marking to the j-th 
tangible marking by trajectories of length not greater than k transition firings 
provided only vanishing markings are reachable before the j-th tangible marking 
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Generalized stochastic Petri nets
• Assumption

There are no loops in the set of vanishing states.

Hence,

Finally:
where

 - a transition probability from the i-th tangible state to the j-th tangible state 
 provided transitions through vanishing markings are taken into account,ijw
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Generalized stochastic Petri nets
Transient behaviour

Definition

A final marking is a marking that there are no transitions from it. 

Assumption

There is a single final marking with index f.

- a matrix obtained from the matrix  W  by removing f-th row and f-th 
column.

Matrix multiplication

W
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Generalized stochastic Petri nets
Transient behaviour
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intial one.

- a mean number of occurrences of the j-th marking on all positions 
in 

a sequence of  markings provided the i-th marking is the intial one.
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Generalized stochastic Petri nets
Transient behaviour

The above matrix series is equal to .

Mean sojourn time in the j-th marking

- a set of timed transitions enabled in the tangible marking

Mean time of reaching the final f-th marking provided the initial marking 

is i-th one is:
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Generalized stochastic Petri nets
Cyclic behaviour

• A stationary solution is obtained by solving the following linear equation 
system:
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Generalized stochastic Petri nets
Cyclic behaviour

• Mean ratio of sojourn time in tangible marking   isjM
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Generalized stochastic Petri nets
Cyclic behaviour

• In order to compute mean cycle time, a marking is selected as the reference 
one.

 Let       be the reference marking.

Mean number of transitions through marking between two 
subsequent transitions through the reference marking

Mean cycle time
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Generalized stochastic Petri nets
Performance metrics

•           – a probability that in stationary state, GSPN is in marking 

 is very detailed information. Usually, one is interested in more 
general metrics obtained by aggregation of many states.

Examples

Event that in stationary state there are no tokens in given subset of places.
Event that in stationary state there exists at least one token in given place.
Event that in stationary state there are exactly k tokens in given place.
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Generalized stochastic Petri nets
Performance metrics

• A probability        of an event that there are no tokens in a subset             
of all places.

• M  -  a set of such markings that there are no tokens in a subset             
of all places.
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Generalized stochastic Petri nets

• Comparison of reachability sets of a generalized stochastic Petri net

                                                  and of a Petri net WΛ,,M,PrH,F,,T,PGSPN 0  0MF,T,P,N

In GSPN there are inhibitor arcs and a priority relation.
Hence:

NGSPN )M(R)M(R 00 
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